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tained with ytterbium (in threefold excess) in ammonia con- 
taining alcohol (followed by oxidation with Jones' reagent),14 
the major product formed with T H F  as cosolvent and no 
proton source was the pinacol dimer The presence of yt- 
terbium enolates in these reductions is implied by the isolation 
of saturated ketones prior to oxidation and by analogy with 
lithium-ammonia reduction of similar ~ys t ems . '~ J~  I t  appears 
that ytterbium enolates, like their alkali metal counterparts, 
are stable in liquid ammonia and are appreciably less basic. 
However, an attempt to alkylate the ytterbium enolate from 
6 with methyl iodide was not successful.17 

Finally, the reduction of alkynes was demonstrated with 
diphenylacetylene and 4-octyne (THF cosolvent), affording 
the corresponding trans alkene (Table I). Interestingly, re- 
duction of 1-phenylpentyne gave only a mixture of l-phen- 
ylpentane and starting material, the proportions of which 
depended upon the quantity of ytterbium used. Apparently, 
certain double bonds can be saturated with this reagent,l8 a 
fact which was confirmed by the reduction of norbornadiene 
to bicyclo[2.2.l]heptene (eq 2) in 65% yield.19 

Yb, NH,-THF & t-BuOH & ( 2 )  

The ytterbium-ammonia system thus represents a useful 
reducing agent which resembles the analogous alkali metal 
solutions in potency. The ready availability of this lanthanide 
element,20 in conjuction with its inertness to water and air 
(which necessitates no special precautions in its handling), and 
the fact that strongly basic hydroxides are avoided during 
workup, lends it certain advantages over the more reactive 
metals commonly used in electron-transfer chemistry.21 
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Homoallyl-Cyclopropylcarbinyl Carbonium Ion 
Formation a n d  Rearrangement  under  Strongly 
Basic Conditions 

Summary: Treatment of the ethylene glycol ketal of 2,8- 
dibromocyclooctanone with sodium hydroxide produces the 
ethylene glycol ketal of 2,7-cyclooctadienone (71-76%) and 
a mixture of ethylene glyoxymethyl cyclohept-2-ene- and 
bicyclo[4.l.0]hept-7-ylorthocarboxylates (about 20%), indi- 
cating (in conjunction with the carbocation chemistry of the 
ethylene glycol ketal of 8-bromocyclooct-2-enone) that in- 
termediate homoallyl-cyclopropylcarbinyl carbonium ions 
may be involved in the reactions leading to orthoester side 
products. 

Sir: While the generation and reactions of carbonium ions in 
strongly acidic media are well documented,Ia such is not the 
case for basic media.lb*c In this communication evidence is 
presented which implicates the novel formation and rear- 
rangement of a homoallyl-cyclopropylcarbinyl carbonium ion 
system under strongly alkaline conditions. 

The preparation of 2,7-cyclooctadienone is usually carried 
out according to the reaction sequence developed by Gar- 
bisch.2 Cyclooctanone ethylene ketal (1) is treated with bro- 
mine to give (after recrystallization from methanol) t rans-  
2,8-dibromocyclooctanone ethylene ketal (2),  which is bis- 
dehydrobrominated (with refluxing methanolic sodium hy- 
droxide) to the diene ketal 3, which in turn is hydrolyzed to 
4. It has now been discovered that there are interesting side 
reactions (apparently involving intermediate carbonium ions) 
which accompany the elimination reaction (2  -+ 3). 
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Table I. Carbon-13 NMR Chemical Shift Assignments for Orthoesters 5-7'~b~c 

compd C-1 c-2  c - 3  c -4  c -5  C -6 c-7 C-8 c-9,10 c-11 

6 28.1 14.0 23.3* 21.7* (21.7) (23.3) (14.0) 122.9 65.1 49.4 
5 47.1 133.9* 130.8* 31.3t 28.87 27.2t 28.5t 124.8 65.7 48.8 

7 46.1 29.1 27.4* 29.1* (29.1) (27.4) (29.1) 125.7 65.6 48.7 

All spectra measured in benzene-& with internal Mersi. Values in parentheses are those of symmetry related atoms. Chemi- 
cal-shift assignments were made on general shielding parameters [J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, 
New York, N.Y.. 19721, relative signal intensities, and the residual splitting patterns observed with off-resonance partially decoupled 
spectra; pairs or groups; of signals which could not be rigorously assigned to specific carbons are indicated by the symbols * and +. 

X Scheme I 

U?,/ w x 
3 4 1, x = H 

2, x = Br 

The conversion of analytically pure dibromo ketal 2 to diene 
ketal 3 was performed several times as described previously.2 
However, when the product was isolated by high vacuum 
distillation as reported2 [65 "C (0.3 mmHg)], its purity was 
only about 75% (although the yield of distillate was close to 
9O.h). On the other hand, when the rectification was conducted 
a t  higher pressure [133-135 "C (31 mmHg)] the yield was only 
71-76%, but the purity of the distilled product was >95%; in 
addition to the distilled material, there remained a pot residue 
which accounted for about 20% of the material b a l a n ~ e . ~  

Investigation of the above-mentioned residue revealed that 
it was composed of two major compounds which are extremely 
sensitive to acid hydrolysis. Utilizing a combination of spec- 
troscopic and chemical methods, the structures of the major 
components were shown to be the orthoesters 5 and 6 (in the 
approximate ratio of 3:2). The carbon-13 NMR spectra (Table 
I) were particularly instructive: for 5 ,  the units HC=CH and 
CH30C(OCH2)2CH, as well as four different CH2 groups, 
were established; while for 6, the CH30C(OCH&CH moiety, 
as well as two sets of tiuo identical CH2 groups and one set o f  
two identical CH groups, were ascertained. Hydrogenation 
of 5 gave the corresponding saturated orthoester 7, whose 

CO1 R 
h 

OCH 8, R = CII,CII,OII - .  
7 " 10, R = H 

11, R = CH,  

6 C O - R  C Z ; C O 2 C H , ) ?  

H 12 
9, R = CH,CH,OH 

13, R = €I 
14, R = CH,CII,  

carbon-13 NMR spectrum concurred with the symmetry an- 
ticipated. Hydrolysis of orthoesters 5 and 6 gave esters 8 and 
9, whose structures were elucidated by chemical degradation 
(as well as consistent spectral and analytical data). Saponifi- 
cation of 8 gave the acid 10, which was esterified to 11,4a and 
subjected to the Lemieux-von Rudloff oxidative cleavage to 
give (after Fisher esterification) the triester 12, whose spectral 
data were identical with those of authentic material prepared 
independently from dimethyl malonate and methyl 5-bro- 
movalerate. Similarly, saponification of 9 gave 13, which was 

15 16 17 

fi OCH 
18 19 

11 

1 5 

6 

esterified to 14,4b whose spectral data were identical with those 
of ethyl exo-norcarane-7-carboxylate (prepared from cyclo- 
hexene and ethyl diaz~carboxylate~). 

Having unequivocally determined the structures of the side 
products 5 and 6, attention was directed to ascertaining their 
modes of formation. The most straightforward mechanism 
for the production of orthoesters 5 and 6 involves the inter- 
mediacy of the homoallyl-cyclopropylcarbinyl carbonium ions 
illustrated in Scheme I. Elimination of the first molecule of 
HBr from dibromo ketal 2 produces the homoallylic bromo 
ketal 15, which under the very polar reaction conditions can 
ionize to the homoallylic carbonium ion 16 and its cyclopro- 
pylcarbinyl counterpart 17. Rearrangement of ions 16 and 17 
utilizing the ethylene glyoxy unit would give carbocations 18 
and 19 (stabilized by the adjacent oxygen atoms), which are 
trapped by methoxide-methanol to  give orthoesters 5 and 
6.6 

In order to test the interpretation advanced in Scheme I, 
homoallylic bromide 15 was prepared (by carrying out the 
elimination reaction to the extent that only a small amount 
of diene ketal was formed) and subjected to various carbonium 
ion producing reactions. Thus, methanolysis of distilled 15 
gave orthoester 5 exclusiuely. Likewise, treatment of 
methanolic 15 with aqueous silver nitrate solution gave 
quantitatively orthoester 5, which under the reaction con- 
ditions was hydrolyzed to ester 8.' These results are compat- 
ible with the intermediacy of the homoallyl carbonium ions 
16 and 18, and lend support to the hypothesis of Scheme I. The 
fact that no cyclopropylcarbinyl products were formed is 
surprising in view of the results for the acetolysis of 3-cy- 
cloocten- 1 -yl brosylate (which gave bicyclo[ 5.1 .O] octan-2-01s 
as the major products).8 

An alternative mechanism not involving carbonium ion 
reorganizations is one related to the semibenzilic rearrange- 
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Scheme I1 

(a) 
5 - 1 8 -  

15 

LB' 
20 

menLg While such an. interpretation (Scheme 11) nicely ac- 
commodates the transsformation of 15 to 5 ,  it is rather cum- 
bersome for the conversion of 15 to 6: a [1,3] sigmatropic shift 
to generate the ketene acetal 20 must precede the ejection of 
bromide during the formation of the three-membered ring." 
The semibenzilic mechanism also does not account for the 
absence of cyclopropylcarbinyl products in the reactions of 
15 with methanol or silver nitrate. 

In conclusion, based on the information available, the car- 
bonium ion pathway of Scheme I seems best suited to ra- 
tionalize the formation of orthoesters 5 and 6. This unexpected 
result raises questions about similar possible side reactions 
taking place during the preparation of ketals of 2,6-cyclo- 
heptadienone, 4,4-disubstituted cyclohexadienones, and cy- 
clopentadienone where the constraints of smaller ring sizes 
enter into the picture. Work in these and other related areas 
is in progress. 
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